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This paper introduces an analytical model capable of predicting the location of solidification front as well
as the full solidification time for heterogeneous materials such as close-celled metallic foams. Full numer-
ical simulations with the method of finite difference are separately conducted to validate the analytical
model. The model predicts that an increase in porosity causes significant retardation of full solidification
as a result of decreased effective thermal conductivity and diffusivity of the porous medium. Effects of
pore shape and cooling temperature on overall solidification behavior were also studied.
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1. Introduction

Phase change occurring with solidification (or melting), gener-
ally known as the ‘‘Stefan problems”, is associated with many prac-
tical applications such as castings, welding, heat treatment,
thermal energy storage, and freezing or thawing of soils and foods
[1–3]. Such problems were pioneered by Stefan [4] who first exam-
ined the transfer of heat during the phase change of icecap in the
North Pole. Due to mathematical complexities in Stefan problems,
only a few exact solutions are at present available including Neu-
mann’s solutions for the solidification of a semi-infinite slab melt.
In Neumann’s solution, the temperature of the slab melt is taken as
temporally and spatially invariant and, for cooling, a sudden intro-
duction of a constant temperature is imposed at the wall boundary.

Despite the importance of Stefan or Stefan-type problems and
the continuous efforts made by numerous studies, analytical solu-
tions of such phase change problems are still limited to a few ide-
alized situations. This is mainly because of the moving boundaries
(interfaces) among different phases, the locations of which are
essentially unknown. A comprehensive review of existing exact
solutions can be found in Carslaw and Jaeger [5]. On the other
hand, numerous approximate methods including heat balance
integral [6], moving heat source [7], and perturbation [8] have
been proposed to simplify the problem.
ll rights reserved.
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Previous efforts for examining how a phase interface evolves in
time mainly deal with the solidification or melting process in
‘‘homogeneous” (dense) materials. However, no ‘‘pure” homoge-
neous materials exist as all engineering materials contain more
than one phase and hence are, exactly speaking, ‘‘heterogeneous”
materials. One of the emerging heterogeneous materials is metallic
foams having either closed or open cells. The low densities and no-
vel physical, mechanical, thermal, electrical, and acoustic proper-
ties of the metal foams have led to a diverse range of practical
applications such as ultra-lightweight structures, energy absorp-
tion, thermal management, and sound absorption [9].

A typical fabrication route of close-celled aluminum foams is di-
rect foaming, as illustrated in Fig. 1. In this technique [10], calcium
is firstly added to aluminum melt at 680 �C. The melt is then stirred
for several minutes whilst its viscosity continuously increases due
to the formation of calcium oxide (CaO). After the viscosity of the
melt has reached a desirable value, TiH2 which serves as the blow-
ing agent by releasing hydrogen is added to the melt. The melt
soon starts to expand slowly and gradually fills the foaming vessel.
As the vessel is cooled below the melting temperature of the mix-
ture, the melt foam turns into solid state.

2. Processing of close-celled metallic foams: control of pore
morphologies

Traditionally, close-celled aluminum foams with polygonal
pores and porosities higher than 0.8 (Zone I) have been developed
[11–15], as shown in Fig. 2. With recent advances in processing
technologies, aluminum foams with high porosities and small
polygonal pores (Zone II) [16] or low porosities and spherical pores
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Nomenclature

cp specific heat of solid materials [J/(kg K)]
fs solid fraction
H total thickness of melt along the direction of solidifica-

tion [m]eH enthalpy [J]
~h sensible enthalpy [J]
ke effective thermal conductivity of porous materials [W/

(m K)]
ks thermal conductivity of dense solid materials [W/(m K)]
L latent heat [J/Kg]
q00 heat flux though solidified layer [W/m2]
S thickness of solidification layer [m]
t time [s]
T0 cooling temperature [K]
Tliquidus liquidus temperature [K]
Tsolidus solidus temperature [K]
Tm melting temperature [K]
Ts, Tl solid and melt temperature [K]
x coordinate coinciding with solidification

Greek symbols
ae effective thermal diffusivity of porous materials [m2/s]
as thermal diffusivity of dense solid materials [m2/s]
b shape factor
e porosity
v non-dimensional position (=x/H)
h non-dimensional temperature (=(T�T0)/(Tm�T0))
k constant defined by Eq. (7)
n non-dimensional solidification front (=S/H)
qe effective density of porous materials [kg/m3]
qs density of solid composition [kg/m3]
s non-dimensional time (=ast/H2)
Subscripts
e effective value
l liquid phase
ref reference value
s solid phase
0 at x = 0
H at x = H

Fig. 2. Cross-relationship amongst porosity, pore size and pore shape for close-
celled aluminum foams [15];

134 B. Zhang et al. / International Journal of Heat and Mass Transfer 52 (2009) 133–141
(Zone III and Zone IV) [17,18] have been manufactured. Therefore,
for closed-celled aluminum foams, the pore shape can be catego-
rized into three groups according to the porosity (denoted here
as e): spherical pores, sphere-like pores, and polygonal pores. For
most close-celled aluminum foams with relatively low porosity
(e < 0.7), the pores are likely to be spherical; as the porosity is in-
creased beyond 0.8, the pores tend to become polygonal; the pores
will be sphere-like when the porosity lies between 0.7 and 0.8 [15].
It can be concluded from Fig. 2 that if the pore size and porosity of
close-celled aluminum foam are fixed, its pore shape is also fixed.

It has been established that close-celled metallic foams with
different pore morphologies also exhibit different load-bearing
and energy-absorbing properties [17,18]. For instance, experimen-
tally, it was found that close-celled Al alloy foams with spherical
pores have superior energy absorption properties in comparison
with foams having polygonal pores; (see Fig. 3) [18]. For the same
uniaxial compressive strain level of 0.5, the deformation energy of
Al alloy foams with spherical pores (e = 0.673) is 2.6 times that of
Al alloy foams with polygonal pores (e = 0.886). How to manufac-
ture close-celled metallic foams with desirable pores shapes via
the foaming route has therefore become an important issue for a
variety of engineering applications such as transportation and
aerospace engineering.
Fig. 1. Process route of direct foaming method
Porosity, pore size and pore shape are the three main factors
controlling the cellular morphology of a close-celled metallic foam.
for metal melts (‘‘Alporas – process”) [10].



Fig. 3. Effect of pore shape (porosity) on energy absorption capability of close-
celled aluminum foams [18].

Fig. 4. Geometry and boundary conditions for one-dimensional Stefan problem in a
finite region.
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To process metallic foams with a tighter control of pore morphol-
ogies requires establishing the inherent relationships amongst
pore size, porosity and pore shape, as well as the general frame-
work of processing steps and techniques affecting pore structure
control during foaming. To this end, a better understanding of
the complicated foaming and solidification process becomes a
key step. It has been demonstrated that the evolution of cellular
structure is influenced by many processing factors such as the vis-
cosity, foaming time and solidification mode [15,19,20]. This
makes the foaming and solidification processes extremely compli-
cated, leading to difficulties in pore structure control.

To obtain pure aluminum foams having high porosity, it needs
not only to precisely control the porosity by using the relationship
between porosity and foaming time, but also to solidify the melt in
time during the plateau stage on the porosity–time curve to con-
trol the pore size and uniformity of pore distribution [15]. To ob-
tain aluminum alloy foams, in addition to the steps mentioned
above, multi-directional solidification is also needed in order to
overcome the shrinkage caused by the additional force field during
cooling [21]. For high strength aluminum alloy foams having
spherical pores and relatively low porosities, a suitable amount
of vesicant (about 1.0%) and proper stirring time (about 100 s)
are required in order to drop the plateau stage of porosity-time
curve to the low porosity regime [15].

The focus of this study is to analytically examine how the solid-
ification front (interface between two phases) proceeds in time un-
der various cooling conditions. The present analysis is limited to
close-celled metal foams consisting of dense materials and ran-
domly spaced gaseous pores, with aluminum foam chosen as the
prototype. In the proposed analytical model, an existing model
for the effective thermal conductivity of porous media as a function
of both the porosity and pore shape is coupled with one of the clas-
sical solutions (Neumann’s solution) to account for the influence of
pores in the solidification process. Full numerical simulations with
the method of finite difference are separately conducted to validate
the predictions of the analytical model.

3. One-dimensional Stefan problem for dense materials

An analytical solution is available for a classical but fundamen-
tal solidification problem described as: one side of the melt with
total thickness of H, initially at melting temperature Tm, is sud-
denly exposed to temperature T0 (T0 < Tm) at time t > 0, so that
the solidification takes place from x = 0 as illustrated in Fig. 4.
For simplicity, the melt is assumed to be infinitely wide, indicating
one-dimensional problem along the x-axis. When the wall temper-
ature at x = 0 begins to drop below Tm, a portion of the internal heat
is liberated triggering the onset of solidification. All of the relevant
physical properties of the material (in either liquid or solid state)
such as the latent heat (L), thermal conductivity (ks), diffusivity
(as), and specific heat at constant pressure (cp) are further assumed
to be invariant in temperature, time, and space. In addition, S(t) in
Fig. 4 represents the interface separating the melt and the solid.
Under such conditions, the temperature distribution may be ex-
pressed as Ts = Ts(x,t) for the solid and Tl = Tm for the liquid.

For linear heat flow, the one-dimensional heat conduction along
the x-axis in the solid must satisfy:

@2Ts

@x2 ¼
1
as

@Ts

@t
; 0 6 x 6 SðtÞ ð1Þ

The initial and boundary conditions are:

Tsðx;0Þ ¼ Tm; at t ¼ 0 ð2Þ
Tsð0; tÞ ¼ T0; at x ¼ 0 ð3Þ
Tsðx; tÞ ¼ Tm; at x ¼ SðtÞ ð4Þ

ks
@Ts

@x
¼ qsL

dS
dt
; at x ¼ SðtÞ ð5Þ

Eqs. (1)–(5) are nonlinear due to the fact that the velocity of the
solidification front is coupled with the temperature via Eq. (5). Be-
cause of the mathematical complexity associated with the ‘‘Stefan
problems”, only a few specialized cases have exact analytical solu-
tions. The exact solution for the problem presented above is known
as Neumann’s solution [5].

According to Carslaw and Jaeger [5], to satisfy Eqs. (1)–(5), the
normalized interface location n must have the form:

n ¼ SðtÞ
H
¼ 2k

ffiffiffiffiffi
ss
p

ð6Þ

where ss is a non-dimensional time defined as ss = ast/H2, and k is
the positive root of the following transcendental equation:

k
ffiffiffiffi
p
p

expðk2Þerf ðkÞ ¼ Ste ð7Þ
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Here, erf(k) is the Gaussian error function defined as
erf ðkÞ ¼ ð2=

ffiffiffiffi
p
p
Þ
R k

0 e�V2
dV and V is a dummy variable. For conve-

nience, the Stefan number Ste = cp(Tm�T0)/L is defined as the ratio
of the sensible heat to the total latent heat in the solidification pro-
cess. When Ste ? 0 (i.e., cooling temperature equal to the melting
temperature), k = 0, indicating that no solidification has taken place.
4. Treatment of pore inclusion

4.1. Assumptions

Of particular interest is how the location of the solidification
front and full solidification time will be varied if pores are distrib-
uted in the melt. For example, solidification with gaseous pores
within the melt is encountered during the fabrication of close-
celled aluminum foams, which influences the quality of the cellular
structure of the end products (and hence the mechanical, thermal,
acoustic and other properties of the material) [15].

Solidification is a complex process involving many factors such
as: (i) mathematical complexity of multidimensional transient
heat transfer with moving boundary; (ii) dependence of physical
properties on temperature, time, and space; and (iii) various phys-
ical and chemical reactions during the solidification process, either
endothermic or exothermic, producing the additional heat genera-
tion. These apply for the solidification with and without the pore
inclusion.

To simplify and better understand the solidification process in
the fabrication of close-celled aluminum foams, the following
assumptions are made: (i) no other heat generation except latent
heat is present and (ii) all physical properties including (effective)
thermal conductivity are invariant in temperature, time, and space.
The latter appears to be reasonable for aluminum (alloy): the var-
iation of its thermal conductivity with absolute temperature (rang-
ing from the ambient temperature to the melting temperature) is
less than 10% [22]. On the other hand, in the temperature range
considered, the thermal conductivity of gaseous (i.e., H2) pores var-
ies dramatically up to 250% [22]. However, its value within the en-
tire range of absolute temperature considered is not comparable to
that of the continuous phase (the melt), low enough to neglect its
contribution to the whole solidification process. Consequently, in
the present analysis, the effects of the physical contents in the
pores and their variations in temperature are ignored. This is
equivalent to assume that the pores are in vacuum.

A new challenge arises with regard to the dealing of pores. This
is due to the fact that metallic foams foaming with blowing agents
are anisotropic as the isotropic distribution of gaseous pores in the
continuous phase is hardly controllable and achievable. In addi-
tion, during the solidification, the pores move, grow, and may even
disappear because of the instability of the melt. To simplify these,
it is firstly assumed that the pores are relatively small in size in
comparison with other physical dimensions of the metal foam,
and randomly distributed in space so that the foam can be taken
as a homogeneous medium with ‘‘stochastically” isotropic effective
physical properties. Furthermore, close-celled aluminum foam is
assumed to be heterogeneous, consisting of continuous dense
materials and randomly distributed discrete gaseous pores. In the
melt, the pores are assumed to be staying still during the whole
process, with additional effects on pore surfaces neglected. In other
words, the pores maintain the same size and location during the
whole solidification process.

The thermal conductivity, heat capacity, and density of gas are
considerably smaller in comparison with those of typical metals,
e.g., aluminum (both in its liquid and solid state) and hence ig-
nored. Since the density of the material was previously assumed
to be constant for the liquid phase, natural convection in the melt
is not considered. Typically, the pores in the melt have sufficiently
small sizes for natural convection within the pore to be negligible
[9]. In the present analysis, thermal radiation is also not consid-
ered. Consequently, the heat is transferred only by conduction in
the solid and liquid.

4.2. Effective properties of close-celled foams

Thermal conductivity is a key parameter in any heat conduction
problem. There exist several analytical models to obtain the effec-
tive thermal conductivity of a porous medium in steady state [23–
26]. In the present study, the exact solution reported by Bauer [23]
assuming that the porous medium is consisted of identifiable con-
tinuous and randomly distributed discrete phases is employed and
combined with Neumann’s solutions presented in Section 2 to
solve the solidification problem for close-celled aluminum foams.

According to Bauer [23], the relationship between the effective
thermal conductivity ke of a porous medium and that of its compo-
sitions may be expressed as:

ke � kd

ks � kd

ks

ke

� �1�ð2=3bÞ

¼ 1� e ð8Þ

where ks and kd are separately the thermal conductivities of contin-
uous phase and discrete phase (pore), e is porosity, and b is shape
factor. The shape factor (b) given by the exact solution is equal to
‘‘1” for spherical pore (3-dimensional) and circular pore (2-dimem-
sional). Eq. (8) implies the dependence of the effective thermal con-
ductivity on both the porosity and pore shape factor. For close-
celled aluminum foams, only ks will be considered since the con-
duction of heat via gaseous medium in the pores is negligible com-
pared to that of the continuous phase. Consequently, Eq. (8) is
reduced to,

ke ¼ ksð1� eÞ3b=2 ð9Þ

According to Gibson and Ashby [9], the specific heat, latent heat,
and fusion temperature of a porous material are equivalent to those
of the dense parent material whilst its effective density qe can be
written as:

qe ¼ qsð1� eÞ ð10Þ

where qs is the density of the dense material. Substitution of Eqs. (9)
and (10) into the definition of thermal diffusivity, a = k/qcp, leads to
the following equation for the effective thermal diffusivity ae:

ae

as
¼ f ðe; bÞ ¼ ð1� eÞð3b=2�1Þ ð11aÞ

which, for spherical and circular pores, simplifies to:

ae

as
¼ f ðeÞ ¼ ð1� eÞ1=2 ð11bÞ
4.3. Modified solution for solidification in close-celled foams

For porous media, the normalized interface location n of Eq. (6)
needs be modified to account for the parameters associated with
pore inclusion (e.g., porosity and pore shape), as:

n ¼ 2k
ffiffiffiffiffi
se
p

ð12Þ

where se is the non-dimensional time defined as se = aet/H2.
Substitution of Eq. (11) into (12) yields a modified solution for

the location of solidification front in close-celled foams as:

n ¼ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðe; bÞ � s

q
ð13Þ

where k is determined by solving Eq. (7) and f(e, b) is defined by Eq.
(11).
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5. Numerical simulations

5.1. Physical and numerical models

Due to difficulties associated with the experimentation for
solidification in close-celled foams, it is necessary to carry out
numerical simulation to validate the analytical model introduced
in this study. To this end, the finite difference method (FDM)
embedded within a commercially available software Flow-3DTM is
employed.

A physical model [15] and a numerically generated model for
close-celled aluminum foam are shown in Fig. 5(a) and (b), respec-
tively. The boundary conditions are fixed wall temperature at x = 0
and thermal insulation at x = H (Fig. 5(b)). To ensure one-dimen-
sional heat flow along the x-direction, boundaries in other direc-
tions are taken as symmetric. For simplicity, two-dimensional
circular pores with varying sizes distributed randomly in space
and having adiabatic pore boundaries (Fig. 5(b)) are used to simu-
late the (nearly) spherical pores of Fig. 5(a).

During the entire simulation, MATLABTM is used to generate data
for pores having different sizes and spatial locations, followed by
solid model generation using a computer aided design (CAD) pro-
gram. The solid model is then imported for the FDM simulation.
It should be noted that during the generation of pores having ran-
dom size, the upper and lower limits were set as 5.0 mm (for 5
pores per inch (PPI) foams) and 0.64 mm (for 40 PPI foams), respec-
tively, to comply with the pore size variation of the actual close-
celled foams in production. Here, the actual pore sizes and pore
distance of closed-celled aluminum foams foaming with blowing
agent were measured, based on images taken using a scanning
electron microscopy (SEM).

5.2. Governing equations and boundary conditions

With the convection term and internal heat generation ne-
glected, the governing equation for transient heat conduction with
a moving boundary may be expressed as [27]:
Fig. 5. Topology of close-celled foams: (a) image of close-celled aluminum foam with sp
medium and solid Al ligaments, respectively [15]; (b) computational model generated w
@

@t
ðqeHÞ ¼ r � ðkrTÞ ð14Þ

where q is density, and eH is enthalpy equal to the sum of the sen-
sible enthalpy ~h and latent heat DeH:

eH ¼ ~hþ DeH ¼ ~href þ
Z T

Tref

cpdT

 !
þ ð1� fsÞL ð15Þ

Here, ~href and Tref are the reference enthalpy and temperature, cp is
the specific heat at constant pressure, L is the total latent heat, and
fs is the solid fraction defined as:

fs ¼
0 if T > Tliquidus

Tliquidus�T
Tliquidus�Tsolidus

if Tsolidus < T < Tliquidus

1 if t < Tsolidus

8>><>>: ð16Þ

where Tliquidus and Tsolidus are the liquidus and solidus temperatures,
respectively.

In the FDM simulation, it is assumed that local thermal equilib-
rium is in force at the boundary between pores and dense material.

5.3. Consideration of pore shape

As described in references [23,26], both the pore shape as well
as porosity affect the effective thermal conductivity of a porous
medium. To examine the effect of the shape of individual pores
on the effective thermal conductivity at a given porosity, the shape
factor (b) in Eq. (9) was numerically obtained in steady state. Five
different pore shapes (e.g., triangle, square, pentagon, hexagon, and
circle) were considered in the present study. Fig. 6 shows the gen-
erated computational domains.

To numerically calculate b, unlike that illustrated in Fig. 5(b),
a constant heat flux (q00) is imposed on the surface at x = 0 while
the temperature at x = H is fixed to be constant (TH = 300 K). On
the other hand, the temperature at x = 0, T0, is allowed to vary
according to the effective thermal conductivity (ke) to be deter-
mined. Then, the effective thermal conductivity is calculated
using Fourier’s law, as:
herical pore and low porosity (�0.7) where black and white areas indicate gaseous
ith boundary conditions.



Fig. 6. Computational models of randomly distributed pores with different shapes: (a) triangle; (b) square; (c) pentagon; (d) hexagon; (e) circle.

0.7

0.8

0.9

1

ε = 0.0

138 B. Zhang et al. / International Journal of Heat and Mass Transfer 52 (2009) 133–141
q00 ¼ �ke
T0 � TH

H
ð17aÞ

where H is the thickness of the foam block coinciding with the
direction of solidification (the x-axis). The calculated value of the
effective thermal conductivity for each pore shape is then substi-
tuted into Eq. (9) to determine the shape factor.
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Fig. 7. Analytically and numerically predicted temporal evolution of solidification
front (n) in the melt with randomly distributed circular pores for Ste = 0.06; test
data for dense material are taken from Ref. [28].
6. Discussion of results

6.1. Solidification in close-celled foams with circular pores

Consider first a dense material without any pores (e = 0), ini-
tially in liquid state at melting temperature Tm. At t = 0 (i.e.,
s = 0), the wall temperature at x = 0 is instantly dropped to a con-
stant temperature T0 (<Tm). As a result, solidification initiates from
a region in the vicinity of the wall, x = 0. Fig. 7 shows how the loca-
tion of the solid–liquid interface (i.e., solidification front) varies in
time for a fixed Stefan number of 0.06. This value of Stefan number
was chosen to facilitate the experimental validation of the dense
material data [28]. The solid curve obtained from Neumann’s solu-
tion Eq. (6) for e = 0 (dense material) indicates a nonlinear and
monotonic propagation of the solidification front, which agrees
well with the present numerical simulation. However, both curves
appear to deviate systematically from the experimental data re-
ported by Xu and Naterer [28], although the overall trends are sim-
ilar. This difference results from a time delay partly associated with
the super-cooling when solidification is initiated, which is not con-
sidered in both the analytical model and numerical simulation. If a
time delay say Ds = 0.55 is applied, both the analytical and numer-
ical predictions collapse onto the experimental data points as
shown by the dashed line in Fig. 7.

The nonlinear trend exhibiting in Fig. 7 is attributable to the fact
that the solidification front moves slower as it moves away from
the wall boundary x = 0. The conduction of heat in the solidified
layer is governed by Fourier’s law:

q00 ¼ �k
T0 � Tm

SðtÞ ð17bÞ
For a given temperature difference (i.e., T0�Tm = constant) and with
the assumption of invariant thermal conductivity, the solidification
front moves away from the wall boundary as time elapses. There-
fore, the effective heat flux q00 traveling though the solidified layer
is decreased in a nonlinear manner as q00 � 1/S(t). This causes the
deceleration of the solidification rate as the solid–liquid interface
moves away from the wall boundary.

To examine the effects of pore inclusion in the melt on the over-
all solidification behavior of close-celled aluminum foam, a se-
lected case of porosity e = 0.7 (randomly distributed circular
pores) is next considered. Results from the numerical simulations
as well as analytical predictions Eq. (13) are presented in Fig. 7.
The nonlinear and monotonic behavior of the solidification front



Fig. 8. Solidification front (n) plotted as a function of porosity for fixed Stefan
number (Ste = 0.06) and time (s = 1).
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(same trend as the dense material) is clearly seen, although the
presence of pores in the melt significantly delays the solidification.
This retardation of the solidification can be explained by the reduc-
tion of effective thermal conductivity and diffusivity due to pore
inclusion. With the presence of pores, the low thermal conductivity
of gaseous medium acts to reduce the effective thermal conductiv-
ity of the solidified foam. For example, the effective thermal con-
ductivity drops down to 16.4% of that of the dense material if
e = 0.7. Consequently, the solidification front only reaches about
72% of the total thickness of the material block by the time when
the dense material is fully solidified. The results of Fig. 7 demon-
strate that there is excellent agreement between analytical and
numerical predictions, within a deviation approximately 5%. Given
that the present analytical model is simple and expressed in
closed-form, this agreement is remarkable.

As can be observed from Fig. 7, for a given cooling condition
(Stefan number) and time (s), the solidification for a lower porosity
case progresses further towards the dense materials. To elaborate
the effect of porosity on the location of the solidification front, a
full range of porosity values is considered. As depicted in Fig. 8,
the retardation of the solidification as a result of the increased
porosity is gradual in the low porosity range (e.g., e < 0.7) whereas
the extent of the delay of the solidification drastically becomes
pronounced for a further increase in porosity when e > 0.7.

6.2. Effects of pore shape on solidification in close-celled foams

The presence of circular pores in the close-celled foam has been
shown to strongly influence the solidification process. As above-
mentioned, in most close-celled foams having relatively low poros-
ities, the cross-sectional shape of the individual pores is likely to be
Table 1
Numerically calculated shape factors for different pore shapes for e = 0.5 (H = 0.1 m and q

Pore shape Number of sides T0[K] TL

Triangle 3 415.07 30
Quadrangle 4 389.84
Pentagon 5 387.93
Hexagon 6 385.03
Circle Infinite 376.71
circular; as the porosity is increased beyond 0.8, the pores tend to
become non-circular [15]. It has been reported that the inclusion of
non-circular pores leads to the variation of effective thermal con-
ductivity although porosity is kept constant [26]. In such cases,
the shape factor (b) needs to be determined in order to estimate
its influence on the solidification process. Table 1 summarizes
the numerically calculated shape factors. The exact solution [23]
gives b = 1 for circular or spherical pores, identical to that obtained
from the present numerical simulation. Polygonal pore geometries
(e.g., triangle, square, pentagon, and hexagon) all have shape fac-
tors larger than unity, resulting from the lower effective thermal
conductivity than that of the circular pore case for a given porosity
(Table 1).

Adopting the calculated shape factors, we consider next the ef-
fects of randomly distributed pores having different pore shapes
on the temporal evolution of the solidification front and full solid-
ification time. Fig. 9(a) plots the temporal evolution of solidifica-
tion for selected pore shapes, with the Stefan number fixed at 0.6
and the porosity at 0.7. As the pore shape changes from circular,
hexagon, pentagon, and square to triangle, the solidification is
increasingly delayed. This is attributed to the reduced effective
thermal conductivity as the pore shape is varied, although the
porosity is kept constant. For example, the solidification front of
the close-celled foam with randomly distributed triangular pores
has reached only 72% along the direction of the solidification by
the time when the close-celled foam having circular pores is fully
solidified.

The influence of pore inclusion with any pore shapes on the
effective thermal conductivity as well as effective diffusivity of me-
tal foams has been shown to be pronounced. Consequently, the
overall solidification behavior of the porous material is greatly af-
fected, as dictated by the key parameters – porosity and pore
shape. How these two parameters change the full solidification
time of the melt is considered below.

Fig. 9(b) displays the full solidification time predicted from
the present analytical model as a function of porosity for five se-
lected pore shapes. For circular pores, as the porosity is in-
creased from the dense materials (e = 0), the time required for
the full solidification increases accordingly. The rate of increase,
initially mild for low porosity materials, picks up as the porosity
is approximately larger than 0.7. For example, the full solidifica-
tion of porous materials takes 2 times (for e = 0.7) and 3 times
(for e = 0.9) longer than that required for the dense materials
to be fully solidified. For close-celled foams with porosities lar-
ger than 0.7, the time required for full solidification increases
exponentially with increasing porosity as observed in Fig. 9(b).
This implies that when dealing with low porosity materials,
the thermal conductivity of dense materials dominates the full
solidification time whilst porosity only plays a minor role. On
the other hand, for high porosity materials (e > 0.7), it is the
porosity that plays the pivotal role in the overall solidification
process. When non-circular pores are included in the melt, the
overall patterns are similar whereas significant delay of the full
solidification is clearly estimated. Especially with the triangular
pores, it takes twice longer time for the melt to be fully solidi-
fied compared to the circular pores at e = 0.7.
00 = 5.0 � 104 W/m2 used for numerical simulation)

[K] DT[K] ke/ k0 Shape factor b

0.00 115.07 0.20 1.35
89.84 0.25 1.14
87.93 0.26 1.12
85.03 0.27 1.10
76.71 0.30 1.01



Fig. 9. Effects of pore shape on temporal evolution of solidification front (n) and full
solidification time (s) for Ste = 0.06: (a) solidification front; (b) full solidification
time as a function of porosity (e).

Fig. 10. Solidification front (n) plotted as a function of Stefan number for given
porosities (e = 0.0, 0.7) and time (s = 1).
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6.3. Effect of Stefan number on solidified melt thickness

The discussion hitherto on the overall solidification behaviors of
close-celled aluminum foams also with various pore shapes has fo-
cused on fixed cooling conditions such as Ste = 0.06. It is obvious
that when the wall boundary is exposed to a lower cooling temper-
ature for a given material with known melting temperature Tm, the
solidification front expects to move faster, thickening the solidified
layer.

As the Stefan number Ste = cp(Tm�T0)/L varies in a way that
either the temperature difference (Tm�T0) or the product of la-
tent heat (L) and specific heat cp is changed, the solidification
process will behave in a different manner. The former is a con-
trollable parameter before (and during) the solidification
whereas the latter is fixed once the material is chosen. Consider-
ing a given material, e.g., aluminum, the only way to vary the
Stefan number is to change the cooling temperature, T0. An in-
crease in Stefan number leads to the significant thickening of
the solidified layer in a nonlinear-monotonic fashion as shown
in Fig. 10 for the circular pore case. For the onset of solidifica-
tion, even a small degree of temperature drop triggers the dra-
matic progress of solidification. Henceforth, the rate of increase
is reduced as the Stefan number is further increased. Regardless
of the porosity, this pattern remains unchanged whilst low
porosity materials reach full solidification earlier than high
porosity materials as previously discussed.

7. Conclusions

An analytical model to predict the location of solidification
front and full solidification time under various cooling condi-
tions for heterogeneous materials such as closed cell foams
has been introduced. The classical solidification model (Neu-
mann’s solution for Stefan problems) and a preexisting analyti-
cal model of effective thermal conductivity for porous media
are coupled to account for the influence of pore inclusion on
solidification. The validity of model predictions is examined by
comparing with full numerical simulations of the solidification
of a dense material as well as model foam containing randomly
distributed circular pores. Excellent agreement between analyt-
ical predictions and numerical results is achieved for both
materials; for the dense materials, both the analytical and
numerical predictions correlate well with experimental
measurements.

The analytical model predicts that porosity plays a major role in
the solidification of high porosity close-celled aluminum foams.
For a fixed Stefan number, an increased porosity causes the delay
of full solidification: about 2 times (e = 0.7) and 3 times (e = 0.9)
longer for the circular pores in comparison with that of the dense
material as a result of the reduced effective thermal conductivity
and diffusivity. A further retardation of the solidification takes
place if polygonal pores (e.g., triangle, square, pentagon, and hexa-
gon pores) are posed in the melt for a given porosity. Furthermore,
for a given porosity (and time), a decrease in cooling temperature
(and hence an increase in Stefan number) leads to significant thick-
ening of the solidified layer. The analytical model, simple and ex-
pressed in closed-form, can be used to guide the manufacturing
of high quality close-celled metallic foams via the direct foaming
route.
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